Peer-reviewed articles 17,970 +



Title: GEOSTATISTICAL MODELLING OF URBAN HEAT ISLAND EFFECT: ANALYSING THE RELATIONSHIP BETWEEN LAND USE PATTERNS AND LAND SURFACE TEMPERATURE IN LAGOS, NIGERIA

GEOSTATISTICAL MODELLING OF URBAN HEAT ISLAND EFFECT: ANALYSING THE RELATIONSHIP BETWEEN LAND USE PATTERNS AND LAND SURFACE TEMPERATURE IN LAGOS, NIGERIA
Okeke Onyedikachi J.; Adurogangan Saheed O.; Adedoyin Samuel J.; Abiala F. Olufisayo; Isaac Adedamola F.
10.5593/sgem2024/2.1
1314-2704
English
24
2.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
Rapid urbanization across Lagos, Nigeria has driven extensive land cover modifications with significant climatic impacts. This study analyzed interlinkages between land use land cover (LULC) transformations and land surface temperature (LST) shifts in the intensely developing Lagos suburb of Ikorodu from 1991-2021 utilizing robust geospatial techniques. Multi-spectral Landsat 5, 7 and 8 data enabled reliable LULC classification into five covers using a Random Forest algorithm. Subsetting the Ikorodu area facilitated localized change analyses across 1991, 2001, 2011 and 2021. LULC changes significantly impacted regional microclimates by altering surface energy budgets. Replacing vegetation with constructed materials increased LSTs while diminishing humidity via lower transpiration. Quantifying alteration magnitudes and spatial patterns provided crucial historical perspectives on urban expansion and climatic changes. Over 30 years, built-up area rose from 14% to 65% while vegetation declined from 52% to 9%, with LST increasing from 23.13°C to 27.21°C. Statistical analyses indicated LST strongly, and positively correlated with a Built-Up Index. Cooling prevailed on semi-rural peripheries with more intact vegetation. This research demonstrates and models LULC-LST interlinkages over years of swift development around Lagos, delivering a framework for crafting sustainable growth policies and balancing modernization goals with ecological stability. Explicit urban heat island effect mitigation strategies combining infrastructural adaptations and green space retention are recommended to promote regional climate resilience.
[1] Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
[2] Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
[3] Ramachandra, T. V., Bharath, H. A., & Durgappa, D. S. (2012). Insights into urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation, 18, 329-343. https://doi.org/10.1016/j.jag.2012.03.005
[3] Oyinloye, M. A., & Adesina, F. A. (2011). Urbanization: Challenges in Modern Africa. Asian Economic and Financial Review, 1(1), 1.
[5] Adeyeri, O. E., Akinsanola, A. A., Ishola, K. A., Arason, T., & Ebhuoma, E. E. (2017). Assessing the relationship between land surface temperature and land use land cover of Lagos Nigeria. Journal of Applied Geography, 86, 177-193. https://doi.org/10.1016/j.jag.2017.01.020
[6] Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric engineering and remote sensing, 65(5), 611-622. https://doi.org/10.14358/PERS.65.5.611
[7] Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007
[8] Adeoye, N. O., Adeyemo, A. B., & Oladapo, O. D. (2018). Spatio-temporal dynamics of urban expansion in Lagos state. Journal of Sustainable Development Studies, 12(1), 1-23.
[9] Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperature variability over Nigeria. Global Journal of Human-Social Science Research.
[10] World Population Review. (2022). Ikorodu, Nigeria Population 2022. World Population Review. https://worldpopulationreview.com/world-cities/ikorodu-population
[11] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
[12] Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174. https://doi.org/10.2307/2529310
[13] Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351, 309.
[14] Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987
[15] USGS (2016). Landsat 8 (L8) Data Users Handbook. Department of the Interior U.S. Geological Survey. https://www.usgs.gov/centers/eros/landsat-8-l8-data-users-handbook
[16] Markham, B. L., & Barker, J. L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Landsat technical notes, 1(1), 3-8.
[17] Ayanlade, A. (2017). Assessing influences of city growth dynamics on urban heat island phenomena. Climate, 5(4), 79. https://doi.org/10.3390/cli5040079
[18] Ullah, S., You, Z. J., Ullah, W., Zhang, H., & Wang, T. (2019). Factors influencing surface urban heat islands in South Asia. Science of the Total Environment, 658, 1346-1356. https://doi.org/10.1016/j.scitotenv.2018.12.206
[19] Gui, X., Wang, L., Yao, R., & Yu, D. (2019). Investigating the urbanization process and its impact on vegetation change and urban heat island in Wuhan, China. Environmental Science and Pollution Research, 26(30), 30808–30825. https://doi.org/10.1007/s11356-019-05725-x [20] Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International journal of applied earth observation and geoinformation, 67, 30-42. https://doi.org/10.1016/j.jag.2017.12.009
[21] Asaeda, T., Ca, V. T., & Wake, A. (2016). Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment, 128, 413-427. https://doi.org/10.1016/j.atmosenv.2015.10.037
conference
Proceedings of 24th International Multidisciplinary Scientific GeoConference SGEM 2024
24th International Multidisciplinary Scientific GeoConference SGEM 2024, 1 - 7 July, 2024
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Russian Acad Arts; Turkish Acad Sci.
315-324
1 - 7 July, 2024
website
9949
Land Use Land Cover (LULC), Land Surface Temperature (LST), Urban growth, Spatial Statistics, Geographic Information System.

25th SGEM International Conference on Earth & Planetary Sciences


International GeoConference SGEM2025
27 June - 6 July, 2025 / Albena, Bulgaria

Read More
   

SGEM Vienna GREEN "Green Science for Green Life"


Extended Scientific Sessions SGEM Vienna GREEN
3 -6 December, 2025 / Vienna, Austria

Read More
   

A scientific platform for Art-Inspired Scientists!


The Magical World Where Science meets Art
Vienna, Austria

Read More